
Universidad San Buenaventura

Facultad de Ingeniería – Desarrollo de Software 2025

 CRUD - SQLite en Xamarin.Forms Proyecto Integrador Checklist

Ríos Rodríguez María Fernanda
 Aguilar Ivan Camilo
 Roncancio Roldan Alejandro

Universidad San Buenaventura Tecnología de Desarrollo de Software

Profesora Sandra Sánchez
Noviembre del 2025

Universidad San Buenaventura

Facultad de Ingeniería – Desarrollo de Software 2025

CRUD Proyecto Integrador Checklist

1. Descripción General del proyecto:

La aplicación “Checklist” es una app móvil desarrollada en Xamarin.Forms que permite gestionar
un registro de profesores utilizando una base de datos SQLite.
El sistema realiza operaciones CRUD completas:

• Crear nuevos profesores

• Listar todos los registros guardados

• Actualizar la información existente

• Eliminar un profesor seleccionado

La app funciona completamente offline, almacenando los datos en el dispositivo móvil (Android o
emulador) mediante SQLite y la librería sqlite-net-pcl.

2. Modelo de datos:

• Entidad principal: Profesor (definida en Models/Profesor.cs)

Campo Tipo de dato Descripción

IdProfesor string (PK) Identificador único del profesor

Nombre string Nombre del profesor

Apellido string Apellido del profesor

Universidad San Buenaventura

Facultad de Ingeniería – Desarrollo de Software 2025

3. Estructura del proyecto:

 DBSqliteChecklist

 ┣ Data

 ┃ ┗ SQLiteHelper.cs ← conexión y métodos SQLite (CRUD)

 ┣ Models

 ┃ ┗ Profesor.cs ← modelo de datos

 ┣ Pages (o raíz)

 ┃ ┣ MainPage.xaml ← interfaz visual principal

 ┃ ┗ MainPage.xaml.cs ← lógica de interacción (CRUD)

 ┣ App.xaml ← configuración global

 ┗ App.xaml.cs ← inicialización y conexión BD

Universidad San Buenaventura

Facultad de Ingeniería – Desarrollo de Software 2025

• Seguidamente oprimir botón derecho sobre la solución DBSqlite y elige del menú desplegable
Administrar paquetes NuGet para solución (Manage NuGet Packages For Solucion). De la ventana
ubícate en buscar y digita sqlite net pcl luego seleccionar el que se muestra en la figura y
descargarlo.

1. Explicación código:

➢ SQLiteHelper.cs:

Implementa la conexión con la base de datos y los métodos asíncronos que gestionan los datos.
Utiliza SQLiteAsyncConnection para realizar operaciones sin bloquear la interfaz de usuario
lo cual generaremos la creación, actualización, mostrar y eeliminar profesores.

Métodos principales:

• GuardarProfesorAsync(Profesor prof) → Inserta o reemplaza un registro.

• ObtenerProfesoresAsync() → Retorna una lista de profesores.

• ActualizarProfesorAsync(Profesor prof) → Modifica un registro existente.

• EliminarProfesorAsync(Profesor prof) → Elimina un registro de la tabla.

Universidad San Buenaventura

Facultad de Ingeniería – Desarrollo de Software 2025

➢ Profesor.cs:

Contiene el modelo de datos que define la entidad Profesor. Cada propiedad representa una
columna en la tabla SQLite. Incluye el atributo [PrimaryKey] para indicar que IdProfesor es la
clave principal.

Universidad San Buenaventura

Facultad de Ingeniería – Desarrollo de Software 2025

➢ MainPage.xaml:

Define la interfaz visual del formulario principal utilizando XAML. Contiene los campos de texto
(Entry) y los botones para las acciones CRUD.

➢ MainPage.xaml.cs:

Contiene la lógica funcional que conecta la interfaz con la base de datos. Implementa la
validación de datos, carga de la lista y acciones CRUD.

Funciones clave:

• LlenarDatos() → Carga todos los registros desde SQLite al ListView.

• ValidarDatos() → Comprueba que los campos no estén vacíos.

• btnRegistrar_Clicked() → Inserta un nuevo profesor.

• lstProfesores_ItemSelected() → Carga los datos del profesor seleccionado.

• btnActualizar_Clicked() → Guarda cambios sobre el profesor seleccionado.

• btnEliminar_Clicked() → Solicita confirmación y elimina el registro.

• LimpiarCampos() → Restablece el formulario y oculta los botones de edición.

Universidad San Buenaventura

Facultad de Ingeniería – Desarrollo de Software 2025

Universidad San Buenaventura

Facultad de Ingeniería – Desarrollo de Software 2025

➢ App.xaml

Define la estructura global de la aplicación y los recursos compartidos.
En este caso, no contiene estilos ni recursos personalizados, pero es necesario para el
funcionamiento de Xamarin.Forms. Solo declara la clase principal DBSqlite.App.

➢ App.xaml.cs:

Contiene la lógica de inicialización de la aplicación, incluyendo la creación de la base de datos
local y la asignación de la página principal (MainPage).
Aquí se crea una instancia global del helper SQLite que se puede usar en cualquier parte del
proyecto.

Universidad San Buenaventura

Facultad de Ingeniería – Desarrollo de Software 2025

2. Principales métodos implementados:

➢ SQLiteHelper.cs:

public Task<int> GuardarProfesorAsync(Profesor prof) // Inserta o reemplaza

public Task<List<Profesor>> ObtenerProfesoresAsync() // Consulta todos

public Task<int> ActualizarProfesorAsync(Profesor prof)// Actualiza

public Task<int> EliminarProfesorAsync(Profesor prof) // Elimina

➢ MainPage.xaml.cs:

private async void LlenarDatos() // Carga la lista desde SQLite

private bool ValidarDatos() // Valida campos vacíos

private async void btnRegistrar_Clicked() // Inserta profesor

private async void btnActualizar_Clicked()// Actualiza profesor

private async void btnEliminar_Clicked() // Elimina profesor

private void LimpiarCampos() // Limpia formulario

Universidad San Buenaventura

Facultad de Ingeniería – Desarrollo de Software 2025

3. Diagrama de navegación:

┌──────────────────────────┐

│ MainPage.xaml │

│ Registro de Profesor │

│ ┌──────────────────────┐ │

│ │ Campos: Nombre, │

│ │ Apellido │

│ ├──────────────────────┤ │

│ │ [Registrar] │

│ │ [Actualizar] │

│ │ [Eliminar] │

│ │ [Nuevo] │

│ ├──────────────────────┤ │

│ │ Lista de Profesores │

│ └──────────────────────┘ │

└──────────────────────────┘

Universidad San Buenaventura

Facultad de Ingeniería – Desarrollo de Software 2025

4. Decisiones técnicas:

➢ Framework: Xamarin.Forms (Visual Studio 2022):

• Permite desarrollar una sola aplicación móvil con C# y XAML que funciona tanto en Android
como iOS.

• Se eligió por su integración directa con Visual Studio y facilidad para trabajar con bases de
datos locales.

➢ Base de datos: SQLite local (sqlite-net-pcl):

• Librería ligera de base de datos embebida, ideal para almacenamiento local sin conexión a
internet.

• No requiere servidor externo, todo se guarda en un archivo .db3 dentro del dispositivo.

• Compatible con Xamarin.Forms y fácil de implementar mediante clases asíncronas
(SQLiteAsyncConnection).

➢ Diseño de UI: StackLayout, Entry, Button, ListView:

• Se utiliza para definir la interfaz visual: StackLayout, Entry, Button, Label, ListView.

• Los botones cambian dinámicamente su visibilidad según la acción (por ejemplo, solo
mostrar “Actualizar” y “Eliminar” al seleccionar un profesor).

➢ Lenguaje: C#

• Lenguaje orientado a objetos, estable, seguro y con excelente soporte para manejo
asíncrono (async/await).

• Permite escribir toda la lógica del CRUD y conectarse con la base de datos SQLite fácilmente.

➢ Patrón: MVVM simple (Model + Code-behind):

• Aunque no se implementa un ViewModel completo, se sigue el principio de separación:

• Model: Clase Profesor con los atributos.

• Data: Clase SQLiteHelper para operaciones CRUD.

• View: MainPage.xaml (interfaz gráfica).

• Code-behind: MainPage.xaml.cs con la lógica de interacción.

Universidad San Buenaventura

Facultad de Ingeniería – Desarrollo de Software 2025

➢ Persistencia: Archivo .db3 generado en la carpeta local de la app

• Los datos se guardan en un archivo: ChecklistDB.db3 que se crea en la carpeta local de la
app:Path.Combine(Environment.GetFolderPath(Environment.SpecialFolder.LocalApplicati
onData), "ChecklistDB.db3");

➢ Logica de programación:

• Uso de métodos asíncronos para no bloquear la interfaz:

await db.InsertAsync(profesor);
await db.UpdateAsync(profesor);
await db.DeleteAsync(profesor);

• Uso de validaciones simples antes de cada acción (verifica campos vacíos).

• Actualización automática del ListView al agregar, editar o eliminar.

➢ Entorno de desarrollo:

• Visual Studio 2022

• Proyecto tipo Xamarin.Forms App (.NET Framework).

• Probado en emulador Android 11.0 y dispositivo físico Android.

• Usa el SDK de Android, nuget sqlite-net-pcl y soporte para XAML Hot Reload.

➢ Estilo visual:

• Colores y estructura intuitiva:
 Azul (DodgerBlue) para registrar.
 Naranja (Orange) para actualizar.
 Rojo (Red) para eliminar.

• Fuente legible y disposición con StackLayout y Margin para buena presentación visual.

➢ Gestión de errores y alertas:

• Validación previa a cualquier inserción o actualización:

 if (!string.IsNullOrEmpty(txtNombre.Text) && !string.IsNullOrEmpty(txtApellido.Text))

• Mensajes de usuario con DisplayAlert:

• “Profesor registrado correctamente”

• “Por favor complete todos los campos”

• “¿Deseas eliminar este profesor?”

Universidad San Buenaventura

Facultad de Ingeniería – Desarrollo de Software 2025

5. Diseño y experiencia de Usuario:

• Interfaz limpia con colores simples (DodgerBlue, Orange, Red).

• Botones visibles dinámicamente según acción:

• Solo se muestran Actualizar y Eliminar cuando hay un elemento seleccionado.

• ListView actualiza en tiempo real.

• Mensajes de confirmación (DisplayAlert) para operaciones CRUD.

6. Funcionalidad CRUD completa:

Acción Descripción Método principal

Crear Inserta un nuevo profesor GuardarProfesorAsync()

Listar Carga todos los registros ObtenerProfesoresAsync()

Actualizar Modifica un registro existente ActualizarProfesorAsync()

Eliminar Borra un registro existente EliminarProfesorAsync()

Conclusión

La aplicación Checklist fue desarrollada utilizando Xamarin.Forms como framework multiplataforma y
SQLite como sistema de gestión de base de datos local. Se implementaron las operaciones CRUD
(crear, leer, actualizar y eliminar) mediante la librería sqlite-net-pcl, con métodos asíncronos para
optimizar el rendimiento y evitar bloqueos en la interfaz de usuario.

El proyecto emplea una estructura modular compuesta por las capas Model, Data y View, garantizando
una separación lógica entre la definición de datos, la manipulación de la base y la presentación visual.
La persistencia se realiza a través de un archivo local .db3, generado dinámicamente en la carpeta
interna de la aplicación, lo que permite mantener la información almacenada sin conexión a internet.

El uso de C#, XAML y Visual Studio 2022 permitió la integración eficiente de la interfaz gráfica con la
lógica funcional, logrando una aplicación estable, escalable y fácilmente mantenible para entornos
móviles Android.

