Universidad San Buenaventura

Facultad de Ingenieria — Desarrollo de Software 2025

Unrvs s iw
SN BLPXAWYENTIRA

CRUD - SQLite en Xamarin.Forms Proyecto Integrador Checklist

Rios Rodriguez Maria Fernanda
Aguilar lvan Camilo
Roncancio Roldan Alejandro

Universidad San Buenaventura Tecnologia de Desarrollo de Software
Profesora Sandra Sanchez
Noviembre del 2025

Universidad San Buenaventura

Facultad de Ingenieria — Desarrollo de Software 2025

Univs st iy
SN BEPXWENTIRA

CRUD Proyecto Integrador Checklist

. Descripcion General del proyecto:

La aplicacidn “Checklist” es una app movil desarrollada en Xamarin.Forms que permite gestionar
un registro de profesores utilizando una base de datos SQLite.
El sistema realiza operaciones CRUD completas:

e Crear nuevos profesores
e Listar todos los registros guardados
e Actualizar la informacidn existente

e Eliminar un profesor seleccionado

La app funciona completamente offline, almacenando los datos en el dispositivo mévil (Android o
emulador) mediante SQLite y la libreria sqlite-net-pcl.

. Modelo de datos:

e Entidad principal: Profesor (definida en Models/Profesor.cs)

Campo | Tipo de dato Descripcion

IdProfesor | string (PK) | Identificador Unico del profesor

Nombre string Nombre del profesor

Apellido string Apellido del profesor

Universidad San Buenaventura

Facultad de Ingenieria — Desarrollo de Software 2025

Univs st iy
SN BEPXWENTIRA

3. Estructura del proyecto:

DBSqliteChecklist
|- Data
| LsqLiteHelper.cs < conexion y métodos SQLite (CRUD)
F Models
| L Profesor.cs <& modelo de datos

I Pages (o raiz)

| F MainPage.xaml & interfaz visual principal

| L MainPage.xaml.cs < Idgica de interaccién (CRUD)
F App.xaml & configuracion global

L App.xaml.cs & inicializacion y conexion BD

Buscar en Explorador de soluciones (Ctrl+)
= Solucion "AplicacionMovil" (3 de 3 proyectos)
4 [E3 MOVIL
4 DBSqliteChecklist
b 0 Dependencias
4 [N Data
[C# 50LiteHelper.cs
4 B Models
[C#® ltem.cs

[C# Profesor.cs

D ViewModels

D Views

I Appxaml

> CH# Appxaml.cs

I AppShellxaml

e AppShellxaml.cs
c# Assemnblylnfo.cs
2 GettingStarted.txt
4 [MainPagexaml
P Cc# MainPagexaml.cs
4 [# DBSgliteChecklist-Android
Connected Services
& Properties

Univs st iy
SN BEPXWENTIRA

Universidad San Buenaventura

Facultad de Ingenieria — Desarrollo de Software 2025

e Seguidamente oprimir botdn derecho sobre la solucidn DBSqlite y elige del menu desplegable
Administrar paquetes NuGet para solucidon (Manage NuGet Packages For Solucion). De la ventana
ubicate en buscar y digita sqlite net pcl luego seleccionar el que se muestra en la figura y

descargarlo.

NuGet: DBSqli...klist Android* & X NuGet

Examinar Instalado

Buscar (Ctrl+L) -0 preliminar

* sqlite-net-pcl p
SOLite-net s an nd light weight library providing easy SOl ite database storage for .NET, Mono, and
Xamarin applicati

and Eff ile
r tasks building iC droid, and...

% Rg.Plugins.Popup por Kirill

Plugin for Xamarin f) ny page as 3 popup.

‘"“'m * ZXing.Net.Mobile por Redth
W Zxing Barcode Scanning for your Xamarin.iOS, Xamarin.Android, Iverlight) and Wi
apps!

1. Explicacion codigo:

> SQLiteHelper.cs:

- #

Origen del paquete: nugetorg = &

® sqlite-net-pcl

Instalado: 1. Desinstalar
Versién:

@ La asignac o - =

~ | Opciones

Descripcién

Implementa la conexién con la base de datos y los métodos asincronos que gestionan los datos.
Utiliza sQLiteAsyncConnection para realizar operaciones sin bloquear la interfaz de usuario
lo cual generaremos la creacidn, actualizacidn, mostrar y eeliminar profesores.

Métodos principales:

e GuardarProfesorAsync(Profesor prof) = Inserta o reemplaza un registro.
o ObtenerProfesoresAsync() = Retorna una lista de profesores.

o ActualizarProfesorAsync(Profesor prof) = Modifica un registro existente.
o EliminarProfesorAsync(Profesor prof) = Elimina un registro de la tabla.

Universidad San Buenaventura

Facultad de Ingenieria — Desarrollo de Software 2025

Univs st iy
SN BEPXWENTIRA

System.Collections.Generic;
System. Threading.Tasks;
SQLite;
DBSqliteChecklist.Medels;

DBSqliteChecklist.Data

ion db;

dbPath)

db = Q y
db.CreateTableAsync<P

sk<int> GuardarProfesorAsync(Pr:

- IsNullOorEmpty(prof . IdProfesor))
eturn db.InsertOrReplaceAsync(prof);

eturn db.InsertAsync(prof);

»>> ObtenerProfesoresAsync()

r>().ToListAsync();

> ActualizarProfesorAsync(Prof:

return db.UpdateAsync(prof);

> EliminarProfesorAsync(P

turn db.DeleteAsync(prof);

> Profesor.cs:

Contiene el modelo de datos que define la entidad Profesor. Cada propiedad representa una
columna en la tabla SQLite. Incluye el atributo [PrimaryKey] para indicar que IdProfesor es la
clave principal.

DBSqliteChecklist % DBSqliteChecklist. Models.Profesor
SQLite;

DBSqliteChecklist.Models

IdProfesor {

Nombre {

Apellido {

Universidad San Buenaventura

Facultad de Ingenieria — Desarrollo de Software 2025

Univs st iy
SN BEPXWENTIRA

» MainPage.xaml:
Define la interfaz visual del formulario principal utilizando XAML. Contiene los campos de texto
(Entry)y los botones para las acciones CRUD.

on (btnEliminar)

+ <ContentPage xmlns

StackLayout Padding

Label Text

talOptions

Placeholder: Isvisible
Placeholder
Placeholder:

Margin

Button x

ListView x:Name
HeightRequest

> MainPage.xaml.cs:
Contiene la ldgica funcional que conecta la interfaz con la base de datos. Implementa la
validacién de datos, carga de la lista y acciones CRUD.

Funciones clave:

e LlenarDatos() - Carga todos los registros desde SQLite al ListView.

¢ ValidarDatos() - Comprueba que los campos no estén vacios.

e btnRegistrar_Clicked() = Inserta un nuevo profesor.

o IstProfesores_ltemSelected() - Carga los datos del profesor seleccionado.

e btnActualizar_Clicked() - Guarda cambios sobre el profesor seleccionado.

e btnEliminar_Clicked() - Solicita confirmacion y elimina el registro.

e LimpiarCampos() - Restablece el formulario y oculta los botones de edicion.

Universidad San Buenaventura

i B Facultad de Ingenieria — Desarrollo de Software 2025

SN BEPXWENTIRA

DBSqliteChecklist

- @gDBsqliteChecklist.MainPage
w Xamarin.Forms;

‘alstProfesores_ftemSelected(object sender, SelecteditemChangedEventArgs €]
DBSqliteChecklist.Models;
System;

DBSqliteChecklist

MainPage : ContentPage

MainPage()

InitializeComponent();
LlenarDatos();

btnRegistrar_cClicked(sender, EventArgs e)

if (validarbatos())
Profesor prof = Profesor
{
IdProfesor = Guid.NewGuid().ToString(),
Nombre = txtNombre.Text,
Apellido = txtApellido.Text

DBSqlite.App.SQLiteDB.GuardarProfesorAsync(prof);
DisplayAlert("Exito", "Profesor registrado correctamente", "OK");
Limpiarcampos();
LlenarDatos();
H

else

DisplayAlert("Error", "Por favor complete todos los campos®, "OK");

ValidarDatos()

return !

.IsNullOrEmpty(txtNombre.Text) &&
'

.IsNullOrEmpty(txtApellide.Text);

LlenarDatos()

profesores = DBSglite.App.SQLiteDB.ObtenerProfesoresAsync();
1stProfesores.ItemsSource = profesores;

lstProfesores_ItemSelected(sender, SelectedItemChangedEventArgs
if (e.SelectedItem !=)]
{

obj = (Profesor)e.SelectedItem;

txtIdProfesor.Text = obj.IdProfesor;
txtNombre.Text = obj.Nombre;
txtApellido.Text = obj.Apellide;

btnActualizar.IsVisible =
btnEliminar. Isvisible =

btnActualizar_Clicked(sender, ntArgs e)

if (validarDatos())
{
Profesor prof = Profesor

IdProfesor = txtIdProfesor.Text,
Nombre = txtNombre.Text,

Apellido = txtApellido.Text

DBSqlite.App.SQLiteDB.ActualizarProfesorAsync(prof);
DisplayAlert("Exito", "Profesor actualizado correctamente", "OK");
LimpiarCampos();
LlenarDatos();
1

else

DisplayAlert("Error", "Por favor complete todes los campos”, "OK");

Universidad San Buenaventura

Facultad de Ingenieria — Desarrollo de Software 2025

Univs st iy
SN BEPXWENTIRA

> App.xaml

Define la estructura global de la aplicacion vy los recursos compartidos.
En este caso, no contiene estilos ni recursos personalizados, pero es necesario para el
funcionamiento de Xamarin.Forms. Solo declara la clase principal DBSqlite.App.

~ [Application

Application xmlns
xmlns: x
x:Class
Application.Resources
ResourceDictionary
ResourceDictionary
Application.Resources
Application

> App.xaml.cs:

Contiene la ldgica de inicializacidn de la aplicacidn, incluyendo la creacion de la base de datos

local y la asignacion de la pagina principal (MainPage).
Aqui se crea una instancia global del helper SQLite que se puede usar en cualquier parte del
proyecto.

Appaamles # X DESq .
[E¥] DBSqliteChecklist - qlite. -~ A SQLiteDB
v System;
System.I0;
Xamarin.Forms;
pBSqlitechecklist Data;

DESqlite

InitializeComponent();
MainPage = DBSqliteChecklist.

lper SQLiteDB

ath.Combine(
t.GetFolderPath(Env ent.SpecialFolder.LocalApplicationData),
r(dbPath);

return db;
}

Universidad San Buenaventura

B Facultad de Ingenieria — Desarrollo de Software 2025

2. Principales métodos implementados:

> SQLiteHelper.cs:

public Task<int> GuardarProfesorAsync(Profesor prof) // Inserta o reemplaza
public Task<List<Profesor>> ObtenerProfesoresAsync() // Consulta todos
public Task<int> ActualizarProfesorAsync(Profesor prof)// Actualiza

public Task<int> EliminarProfesorAsync(Profesor prof) // Elimina

» MainPage.xaml.cs:

private async void LlenarDatos() // Carga la lista desde SQLite
private bool ValidarDatos() // Valida campos vacios
private async void btnRegistrar_Clicked() // Inserta profesor
private async void btnActualizar_Clicked()// Actualiza profesor
private async void btnEliminar_Clicked() // Elimina profesor

private void LimpiarCampos() // Limpia formulario

Universidad San Buenaventura

Facultad de Ingenieria — Desarrollo de Software 2025

3. Diagrama de navegacion:

842 # b COMARNN%

Registro de Profesor

|
| MainPage.xaml |
|

Registro de Profesor |

Nombre

| | Campos: Nombre, | Apellido
| | Apellido |
REGISTRAR PROFESOR

| 4
| | [Registrar] | Profesores Registrados
| | [Actualizar] |

Rodruguez
| | [Eliminar] |
| | [Nuevo] | .

| sl

| | Lista de Profesores |

Sanchez

| |] | Agudelo

CQOMAE9% COMAB91%

Exito

Profesor eliminado correctamente

Exito

Profesor actualizado correctamente

Universidad San Buenaventura

Facultad de Ingenieria — Desarrollo de Software 2025

Unrvs s iw
S48 BEFXAWYENTIRA

4. Decisiones técnicas:

» Framework: Xamarin.Forms (Visual Studio 2022):

e Permite desarrollar una sola aplicacion mévil con C# y XAML que funciona tanto en Android
como iOS.

¢ Se eligié por su integracidn directa con Visual Studio y facilidad para trabajar con bases de
datos locales.

> Base de datos: SQLite local (sqlite-net-pcl):

e Libreria ligera de base de datos embebida, ideal para almacenamiento local sin conexion a
internet.

e No requiere servidor externo, todo se guarda en un archivo .db3 dentro del dispositivo.

e Compatible con Xamarin.Forms y facil de implementar mediante clases asincronas
(SQLiteAsyncConnection).

> Disefio de Ul: StackLayout, Entry, Button, ListView:
e Se utiliza para definir la interfaz visual: StackLayout, Entry, Button, Label, ListView.

e Los botones cambian dinamicamente su visibilidad segun la accién (por ejemplo, solo
mostrar “Actualizar” y “Eliminar” al seleccionar un profesor).

> Lenguaje: C#

e Lenguaje orientado a objetos, estable, seguro y con excelente soporte para manejo
asincrono (async/await).

e Permite escribir toda la l6gica del CRUD y conectarse con la base de datos SQLite facilmente.

» Patron: MVVM simple (Model + Code-behind):
e Aungue no se implementa un ViewModel completo, se sigue el principio de separacion:
e Model: Clase Profesor con los atributos.
e Data: Clase SQLiteHelper para operaciones CRUD.
¢ View: MainPage.xaml (interfaz gréfica).

e Code-behind: MainPage.xaml.cs con la légica de interaccion.

Universidad San Buenaventura

Facultad de Ingenieria — Desarrollo de Software 2025

Unrvs s iw
S48 BEFXAWYENTIRA

Persistencia: Archivo .db3 generado en la carpeta local de la app

e Los datos se guardan en un archivo: ChecklistDB.db3 que se crea en la carpeta local de la
app:Path.Combine(Environment.GetFolderPath(Environment.SpecialFolder.LocalApplicati
onData), "ChecklistDB.db3");

Logica de programacion:

¢ Uso de métodos asincronos para no bloquear la interfaz:

await db.InsertAsync(profesor);
await db.UpdateAsync(profesor);
await db.DeleteAsync(profesor);

¢ Uso de validaciones simples antes de cada accion (verifica campos vacios).

e Actualizacién automatica del ListView al agregar, editar o eliminar.

Entorno de desarrollo:

e Visual Studio 2022

e Proyecto tipo Xamarin.Forms App (.NET Framework).

e Probado en emulador Android 11.0 y dispositivo fisico Android.

¢ Usa el SDK de Android, nuget sqlite-net-pcl y soporte para XAML Hot Reload.

Estilo visual:

e Colores y estructura intuitiva:
Azul (DodgerBlue) para registrar.
Naranja (Orange) para actualizar.
Rojo (Red) para eliminar.

e Fuente legible y disposicién con StackLayout y Margin para buena presentacion visual.

Gestion de errores y alertas:
e Validacion previa a cualquier insercién o actualizacién:
if (!string.IsNullOrEmpty(txtNombre.Text) && !string.IsNullOrEmpty(txtApellido.Text))
e Mensajes de usuario con DisplayAlert:
¢ “Profesor registrado correctamente”
e “Por favor complete todos los campos”

e “iDeseas eliminar este profesor?”

Universidad San Buenaventura

Facultad de Ingenieria — Desarrollo de Software 2025

Univs st iy
SN BEPXWENTIRA

5. Disefio y experiencia de Usuario:

e Interfaz limpia con colores simples (DodgerBlue, Orange, Red).

e Botones visibles dinamicamente segun accién:

e Solo se muestran Actualizar y Eliminar cuando hay un elemento seleccionado.
e ListView actualiza en tiempo real.

e Mensajes de confirmacion (DisplayAlert) para operaciones CRUD.

6. Funcionalidad CRUD completa:

Accidn Descripcion Meétodo principal
Crear Inserta un nuevo profesor GuardarProfesorAsync()
Listar Carga todos los registros ObtenerProfesoresAsync()

Actualizar | Modifica un registro existente = ActualizarProfesorAsync()

Eliminar Borra un registro existente EliminarProfesorAsync()

Conclusion

La aplicacidn Checklist fue desarrollada utilizando Xamarin.Forms como framework multiplataformay
SQLite como sistema de gestiéon de base de datos local. Se implementaron las operaciones CRUD
(crear, leer, actualizar y eliminar) mediante la libreria sqlite-net-pcl, con métodos asincronos para
optimizar el rendimiento y evitar bloqueos en la interfaz de usuario.

El proyecto emplea una estructura modular compuesta por las capas Model, Data y View, garantizando
una separacion ldgica entre la definicién de datos, la manipulacién de la base y la presentacion visual.
La persistencia se realiza a través de un archivo local .db3, generado dindmicamente en la carpeta
interna de la aplicacion, lo que permite mantener la informacidn almacenada sin conexién a internet.

El uso de C#, XAML y Visual Studio 2022 permitid la integracién eficiente de la interfaz grafica con la
l6gica funcional, logrando una aplicacidén estable, escalable y facilmente mantenible para entornos
moviles Android.

